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A Software and Hardware Architecture for a Modular, Portable, Extensible Reliability

Availability and Serviceability System

James H. Laros III, Sandia National Laboratories (USA) [1]

Abstract— This paper provides a very high level overview of a
software and hardware architecture for a Reliability Availability
and Serviceability system. One of the primary goals of this
architecture is portability. The design of the architecture is
intentionally modular to provide the extensibility necessary to
allow the portions of the system that are not directly portable to
be easily added or modified. This architecture is designed for use
on systems ranging from commodity clusters to custom Massively
Parallel Processing systems.

I. INTRODUCTION

Reliability Availability and Serviceability (RAS) systems
were commonly provided by vendors on mainframe class
systems. Today RAS systems are still found on very high
end custom systems like Red Storm [2] and BlueGene/L
[3]. While these systems provide analogous functionality to
the architecture proposed in this paper they lack both the
portability and extensibility to allow them to be useful on
other platforms. Commodity cluster systems have traditionally
provided only a subset of the RAS capabilities found on
the aforementioned custom architectures. Additionally when
provided, these systems, more accurately categorized as man-
agement systems, are typically not portable. The purpose of
this paper is to provide a very high level overview of a software
and hardware architecture for a RAS system that is designed
to be used on both commodity cluster systems and high end
custom platforms.

Extensibility is key in this design not only for portability
reasons, but to allow even a targeted implementation to be
easily updated or modified. Systems evolve, sometimes rapidly
at first, over their life cycle. This evolution can involve the
addition of new hardware or software components, or simply
a change in the monitoring or management approach in an
effort to increase the RAS of the system. The extensibility
required to allow the evolution of a targeted implementation
is essentially the same as is required to achieve portability to
new systems.

We will discuss a hardware architecture in section II that
while not required can be leveraged to great benefit by the
software design. The foundation of the software architecture is
the System Description Language (SDL) discussed in section
III. The section on Databases (section IV) describes two uses
for information storage for this architecture. Some aspects
of how the RAS components communicate are discussed in
section V. The Device Interface discussion (section VI) briefly
covers how the extensibility of the SDL is exploited to allow
the majority of the RAS system software to be portable while
also enabling it to quickly accommodate systems with new
component interfaces. We present some of the ongoing work

being accomplished at our site, in this and related areas, and
some of our future plans in section VII. We conclude (section
VIII) and recognize some contributions in section IX.

II. HARDWARE

The software architecture described in this paper is intended
to have few if any specific hardware requirements, therefore
the hardware architecture described in this section discusses
general concepts. Figure 1 illustrates concepts that will be
discussed here and in sections that follow. The hardware
architecture will be described in hierarchical terms: the Top-
Level node at the top of a downward growing tree.

Fig. 1. RAS Hardware and Software Architecture

The Top-Level node (depicted in red) is the primary admin-
istrative interface of the RAS system. An administrator has the
capability to control and monitor the entire system from this
node. This node will also host, or interface to, the database
system (the database will be covered in section IV). A properly
designed hardware architecture should only require a single
Top-Level node, however a second Top-Level node may be
desired for fail-over in case of hardware malfunction.

The next level, or levels, of the hardware architecture
host the transport mechanism of the RAS system. This level
may be absent depending on the size of the system. The
transport hardware required (depicted in orange) will directly
correspond to the size of the system and the capability of
the transport hardware itself. Proper sizing of the transport
hardware is critical to the proper functionality (and scalability)
of the RAS system. The transport software design will be
described in more detail in section V.
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The level below the transport hardware, or below the Top-
Level node in the absence of dedicated transport hardware,
is the device interface hardware (depicted in yellow). While
not a requirement, we envision this hardware will be located
in the racks containing the system hardware. This hardware
hosts the daemons that will interface with the actual devices
that provide the command and monitoring capabilities and any
other device included in the system. These devices also serve
as an interface to transport devices or the Top-Level node. Like
the transport devices the amount of device interface hardware
is dependent on the size of the system and the capability of
the device interface hardware itself.

The management device components (depicted in green) are
system specific devices that are leveraged by the RAS system
to control or monitor the system. These devices range widely
in capability. It is important to point out that the proposed
(or any) RAS system can only leverage the capabilities that
the underlying devices (or software components) provide. On
a commodity cluster system, for example, the management
device components may be Intelligent Platform Management
Interface (IPMI)[4] devices. On a custom Massively Parallel
Processing (MPP) system they may be specially designed
embedded systems with a proprietary interface. In either case,
the RAS system must be able to communicate with them in
their language to exploit their capabilities.

It is important to note that the RAS system may interact with
any or all components in the system. It is of critical importance
to design the system, including the RAS hardware, so that
the RAS functionality has little or no impact on the primary
purpose of the system. For example, if a layer of transport
hardware is not provided the Top-Level node may be required
to communicate directly with too many device interface nodes.
This could cause the Top-Level node to be unresponsive to a
critical request that could effect the functionality of the system.
Likewise, if a transport layer is provided but is improperly
sized, based on the size of the system and the capability
of the transport hardware to accommodate the number of
device interface nodes, the transport layer could delay the
transmission of the same type of critical request. This delay
could also adversely effect the functionality of the system.
The number of device interface nodes can also be a potential
bottleneck if too few are configured. For these reasons the RAS
software design allows for a great level of flexibility which
accommodates adding, or removing, hardware components to
tune capabilities in the event of improper initial sizing or
system growth.

III. FOUNDATION

The foundation of the software architecture is a System
Description Language (SDL) that will allow the RAS system
to have detailed and specific knowledge of the underlying
hardware and software components of the system, their roles,
responsibilities, and relationships to other components (liter-
ally any information about the system or individual compo-
nents). The SDL must be extensible. While the goal of the
software architecture is to be portable, it is not possible to
write device specific interfaces for devices that possibly have

not yet been conceived of. While we will not be covering
implementation details in general, this portion of the software
architecture will likely be implemented in an Object Oriented
Language. Regardless of the implementation language, we will
use, with some liberty, object oriented terms to describe the
structure of the SDL. Figure 2 pictorially represents some
of the concepts that will be discussed. In the following
paragraphs, for simplicity, we will discuss characteristics and
functionality of hardware devices. Keep in mind that software
components can also be described in the SDL.

Fig. 2. SDL Class Hierarchy

Consider, for example, that systems are made up of devices.
For the sake of this discussion we will define a device as
any component of the system that you can touch (in practice
this scheme can accommodate anything that can be described
therefore is almost unlimited). There are many characteristics
that all devices have; for instance most devices have a unique
serial number. Since all devices share this characteristic, the
Device class (pictured in blue in Figure 2), in our example the
most generic of the classes, would define an attribute appro-
priate for assigning a serial number to objects of the Device
class. While we feel it is important not to make assumptions,
(in general, assumptions weaken portability) some concepts,
especially those foundational to the software architecture, can
be represented as attributes in generic classes like the Device
class without adversely effecting portability. The concept of
role, for example, can be used to describe the purpose that the
device serves in the system. Abstract concepts, like role, do
not impose requirements on the devices themselves and can
therefore be used without fear of disrupting the portability of
the system. If for an object of class Device the concept of
role does not make sense, the role attribute for that object can
simply be assigned a null value and dealt with appropriately
by the RAS system.

In addition to simple descriptive attributes, a class will
typically contain methods that can be used to exploit the
specific capabilities of a device or a class of devices. (Recall
that we mentioned that the RAS system will only be able to
exploit capabilities of the underlying hardware.) If an interface
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common to all devices exists it would be appropriate to include
a method implementing the interface in the generic Device
class. Typically, however, these types of methods are more
commonly implemented in subclasses that describe groups
of devices (like the Red and Green Device classes), or in
subclasses specific to individual devices (the Redder, Greenest
1 and 2 Device classes).

As illustrated in Figure 2 (Red and Green Device classes),
subclasses of the Device class can be created that include
attributes and methods of devices that are more specific to
the subclass but share (inherit) characteristics of the parent
(Device class). Likewise, additional subclasses can be added to
even more specifically describe categories of devices (Greener
Device class). The final subclass descriptions should be the
most specific. The Redder Device class illustrates an example
where the implementor had the need to keep track of the model
revision for this type of device and felt that it was not generally
applicable enough to be included in the Red Device class.
Even if no unique attribute or capability is defined in the class,
terminal classes serve as a way to differentiate between nearly
identical types of devices, if only by class name (Greenest 1
and 2 Device classes). Terminal classes also have the benefit
of acting as a placeholder in the event that subtle differences
emerge between very similar devices that share a parent class.

By taking this approach we are creating a foundation that is
extensible and can evolve. With the addition of each new class
the SDL becomes more expressive and capable of supporting
systems with an increasingly large variety of devices. By using
object oriented concepts we also leverage the commonality
of these devices without sacrificing the granularity to express
subtle differences. As the SDL evolves it becomes easier to
add support for new device types (potentially as simple as
copying and re-naming an existing class). To maximize the
potential of this approach an object oriented language that
supports complex inheritance relationships should be chosen.

While we have only provided simple examples of attributes
and a general description of methods that define interaction
with devices, it is hopefully easy to see how these concepts
can be leveraged to describe almost anything. While devices
are a very important part of the SDL, the SDL is not limited to
describing hardware. As mentioned previously, aspects of soft-
ware systems and components can be represented using similar
concepts. More abstract concepts can also be expressed.

Figure 3 illustrates an example of a more abstract concept
that can be represented in the SDL, the concept of a point.
A point, in this context, is simply a location on the system.
For example, one point on a system could be defined as the
Network Interface Controller (NIC) of a node in a cluster.
Another point on a system could be defined as the NIC of
a different node on the same cluster system. In addition to
defining these points we can also define a specific diagnostic
program that is valid for the type of NIC that is pointed to
by the points that we have defined. Imagine that we want to
determine if these two NICs on the cluster can communicate
with each other. The concept of points could be leveraged by
a utility (possibly initiated from a Graphical User Interface
(GUI)) that recognizes that the two points selected share a
common diagnostic program. Based on this information, the

utility could run the diagnostic program and report success or
failure. If we expand on this concept by defining points that
represent every NIC of this type on the system, connectivity
can be tested between any node that has a NIC of this type.
Consider how powerful this concept can be if any location
in the system can be represented by a point and associated
with an appropriate diagnostic. The concept of a point is just
another example of a class that can be defined in the SDL. In
implementation the point class could be associated with other
classes by leveraging multiple inheritance. Objects of class
point could also be associated with objects instantiated from
other classes defined in the SDL using other mechanisms.

Fig. 3. Points on a System

Once the SDL is capable of describing the system, a
database, or databases, can be generated and used by the RAS
components to perform their duties (section IV describes more
about the database system).

IV. DATABASE

In the following discussion we will use the term database
broadly to mean a place where information is stored in some
structured way. We will discuss two databases but depending
on how this architecture is implemented it may make sense
to use more than two, possibly optimized for specific access
methods, to satisfy information storage and retrieval needs.

Each system is unique in some way. Even if two systems are
comprised of identical hardware the serial numbers or naming
scheme, for example, of the individual components would
be different. The first database describes each unique system
using the SDL. This database, more accurately a Persistent
Object Store (POS), contains objects representing hardware
devices, software components, and any other abstract charac-
teristic (like points) of the system that can be leveraged by the
RAS software. Additionally, information about relationships
between these objects, like topological information, is also
stored. Once instantiated, this POS is a complete software
description of a unique platform. The POS is used by the RAS
system for any and all information about how to accomplish its
purpose. Attribute information is leveraged for names, roles, IP
addresses, simple and complex relationships and groupings (to
name a few). Methods are used for specific device interaction
and can leverage any capability implemented by a device.
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Methods can also be used to describe how to construct mes-
sages before transmission and interpret them upon receipt (see
section V). Additionally, methods can describe class unique
schemas that can enable storage of information in creative
ways that allow leveraging the strengths of relational databases
without incurring limitations like strict pre-defined schemas.
This information will typically be stored in a database (or
databases) separate from the POS.

The second database that we will discuss is used for storage
of information about the state of the system. This information
would likely be stored in some type of relational database.
The information contained in this database would have many
uses for both real-time monitoring and historic calculation
of system metrics (to name a few). The information in this
database could be directly accessed using whatever interface
the selected database exposes. In this way we can leverage the
power of, for instance, advanced relational database languages.
By using the information in conjunction with the POS and
interpreting it using the SDL, the same information can be
processed in other creative ways. If new ways of processing
the information stored is desired, the best approach can be
chosen from one or a combination of the available methods,
or a new interpretation process can be defined in the SDL and
then leveraged by the system.

Informational databases, such as these, could also be lever-
aged by other system components like run-time systems or
schedulers. Run-time components can use a database for
storing any number of data-points like job runtime or error
codes. Scheduling systems could check the current status of
nodes on the system before allocating them to a user. In
cooperation with the run-time system, the scheduler could also
mark nodes as unavailable that reported error conditions on
previous runs. A GUI could use this database as a source
for presenting last known state of components and update the
information in the database by instructing the RAS system
appropriately. A node marked as unavailable in the database
could be returned to service through the GUI interface after it
is determined to be healthy.

These are just a few examples of how database functionality
could play a role in the RAS architecture. We anticipate that
additional uses for these and other types of databases will
emerge during implementation of this architecture.

V. TRANSPORT

It is essential for a RAS system to be capable of transporting
information from one point to another. In this architecture the
transport mechanism fills this role (see Figure 1). Information
can be, for example, commands initiated by the administrator
on the Top-Level node destined for a specific device or de-
vices, or possibly a report of a failure originating from a device
destined for the Top-Level node. Messages can originate and
be instructed to terminate at any point in the RAS system.

For example, an administrator issues a command on the
Top-Level node (possibly from a GUI) to obtain the status
of a system component. As a result of the request a message
will be created. To preserve extensibility the only mandatory
portions of the message are its destination and the object name

associated with the message. (Note that the destination can be
a single location, a group of locations or everywhere in the
RAS system. The object name is necessary so any component
of the RAS system can retrieve information about the object
from the POS.) Once the message is created it is introduced
into the transport mechanism. Recall from our discussion in
section II that on a very small system it is possible that the
Top-Level node will communicate directly with a device in-
terface node. If so, it uses the same Application Programming
Interface (API) as it would if it were talking to a component
of the transport mechanism. Typically, however, the Top-Level
node will pass the message off to the first of possibly several
transport nodes that lie in the path to the final destination of
the message. An important aspect of the transport mechanism
is that it does not care about the payload of the message.
Once the message reaches its destination, usually one of the
device interface nodes, the SDL provides the key to interpret
the payload based on the class or classes associated with the
object the message is linked to. It is important to point out
that objects can refer to, or in a sense contain, other objects
of the same or different classes. The payload of a message can
therefore be formatted and interpreted in many different ways.
This allows the message itself to contain data in many different
forms and not be limited by a scheme that will likely prove
to be inadequate shortly after implementation. This object
defined format of a message is one concept that allows the
transport mechanism to be highly portable. By encapsulating
the details the transport mechanism can largely ignore what
it is transporting and worry about its responsibility of getting
the message to where it is going. At this point the device
interface node, after receiving the message, interpreting it and
acting on it, will likely construct a message in response and
insert it back into the transport mechanism for delivery.

Transporting a single message may seem uncomplicated but
consider that the transport mechanism will be responsible for
dealing with large numbers of messages in parallel. For a
10,000 node cluster system, if we only account for the nodes
themselves, the transport mechanism would potentially have
to deal with 10,000 messages at the same time. In reality a
10,000 node cluster system has many times more hardware
and software components, all of which add to the number of
messages that the transport mechanism must support. Consid-
erations like these require the transport mechanism, and the
RAS system as a whole, to be scalable.

The transport mechanism scales with the size of the system
by using the SDL to understand its role in information
transport. While the transport mechanism has knowledge of
all aspects of the system the most important (in the area of
scalability) is information about its location in the hierarchy.
Interaction between transports (instances or daemons in the
overall transport mechanism) is specifically described by an
API. Figure 1 illustrates some of the potential areas of inter-
action. Notice that the Top-Level node will communicate with
the transport mechanism using this API as will the device
interface components. The same API may be extended to
communicate with other resources, even resources external
to the RAS system. Run-time and scheduling systems are
examples of components that would potentially interact with
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the RAS system to obtain information using this API. Typi-
cally, however, the device interface components of the RAS
system will be responsible for inserting the largest number of
messages into the transport mechanism.

VI. DEVICE INTERFACE

The device interface components of the RAS system interact
with, potentially, all components (software or hardware) in
the system. Consider that whether the component the RAS
system is required to interact with is hardware or software,
there is fundamentally no difference from the RAS systems
perspective. As an example, whether the device interface
component is talking to a low level firmware interface through
a serial connection, or communicating to a persistent daemon
with a full featured API, it uses methods defined in the
SDL (as part of new or existing classes) to communicate
with the component in a language that it understands. These
methods can easily be added to the SDL so that the device
interface components, or any other part of the RAS system,
then understands the new languages required to communicate
with components either introduced to an existing system, or
a different system entirely. We have stressed the importance
of extensibility throughout this paper. The extensibility of
the SDL is leveraged the most in the interaction between
the device interface components and the system components
themselves.

Device interface components can act on their own based on
predefined configurations. Monitoring functions frequently fall
into this category. These operations can be performed based on
configurations defined in various places. Configuration options
can be part of the object that represents the component being
monitored. Configurations can also be contained in objects
themselves and simply related to the object being monitored.
In the same way groups of configuration objects can be related
to an object, or groups of objects, that are being monitored.
This allows for great flexibility in configuring these or any
other type of operations. This type of monitoring is frequently
used for persistently monitoring the status of components.
For example, a device interface component may be required
to monitor a temperature sensor on the mother board of
a node. The configuration associated with the object being
monitored (the temperature sensor) defines a range. When
the reading is within the defined range no action is taken.
If the reading is outside of the defined range an action, also
described in the configuration, is taken. Typically an out of
range condition like this would result in the device interface
component constructing a message destined for the Top-Level
node to notify the administrator of the condition. The same
condition could alternatively be configured to be handled
by the device interface component which, for example, in
response might increase the speed of a fan that cools that area
of the mother board. If the temperature does not return to the
normal range, in a time also specified in the configuration, the
device interface may then notify the administrator by sending a
message through the transport mechanism of the RAS system.

Device interface components can be instructed to accom-
plish tasks by other parts of the RAS system. An example of

this is a control function initiated by a user on the Top-Level
node and passed to the device interface component through the
transport mechanism. For example, it is common for a user
to query the status of a component, or components, on the
system, possibly in response to a warning condition displayed
on a GUI. In this case a message is generated by the Top-Level
node containing a status instruction and passed to the transport
mechanism which delivers it to the device interface component
to act on the instruction. The device interface component
accomplishes the required task based on its knowledge of
how to interact with the component as defined in the object
representing the component. Based on the response from the
system component, the device interface component constructs
a response message and passes it to the transport mechanism.
The transport mechanism delivers the message to the Top-
Level node where the user can act on the information. These
types of control functions can also result in the status of a
component being updated in a database that tracks this type
of information.

Device interface components can be instructed to accom-
plish virtually anything described in the SDL. Operations that
can be accomplished by the RAS system are only limited
by the capabilities of the components that the RAS system
interacts with.

VII. FUTURE AND ASSOCIATED WORK

While a complete formal implementation of this design
has not yet begun, test implementations of portions of this
system have been accomplished for purposes of verifying
the feasibility of the design. The concept of the SDL is,
for example, a much expanded design based on work done
for the Cluster Integration Toolkit (CIT)[5] project at Sandia
Labs. Test implementations have been written using Intel-
ligent Platform Management Interface (IPMI)[4] devices to
represent the system components. These test implementations
were representative of the SDL in structure and tested the
functionality of both directly including interface code in the
classes and also leveraging external libraries such as the open
source IPMI library FreeIPMI[6]. Research into capabilities
of embedded systems and how they can be leveraged for the
hardware architecture has also been accomplished.

Since the SDL is such a foundational concept in this
design more formal documentation of the design must be
accomplished to flush out potential problems that might be en-
countered and addressed before implementation. Specifically,
the more abstract portions of the design (for example, the
concept of points touched on in this paper) should be detailed
and possibly tested with skeletal implementations. Some of the
more complex relationships envisioned between classes should
also be detailed and tested.

Only high level design work has been accomplished in the
database area. Much research has yet to be done, specifically
into how capabilities of modern databases can be leveraged to
accomplish some of the more complex data mining capabilities
that we have envisioned.

While we do not expect the transport mechanism to be a
difficult portion of the implementation, the importance of this
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component requires that it is not taken lightly. The free form
composition of the messages may present some challenges like
excessive overhead in build up and tear down of messages
by the sender and receiver. The portions of the API that are
exposed outside of the RAS system itself will also have to be
well thought out. Changing the API within a controlled system
causes work, but changing an API intended to be a “standard”
interface can discourage others from using the interface.

VIII. CONCLUSION

While we touched on many of the high level concepts that
describe this design which will guide further specifications
and eventually implementation, this clearly is not a complete
discussion of the many challenges in designing a RAS system.
RAS can be a very broad concept. Even if considered in the
most narrow of scopes RAS is a large topic that is difficult to
address. We feel work in this area is important and impacts
many if not all areas related to computing. The benefits of
mature RAS systems have yet to be realized in many areas of
computing. Hopefully in time, demand for more maintainable
systems will drive concepts that have been common on high
end platforms into other areas of computing.
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